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ABSTRACT

Characterization of the error associated with satellite rainfall estimates is a necessary component of de-

terministic and probabilistic frameworks involving spaceborne passive and active microwave measurements

for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall

events. The authors focus here on the error structure of NASA’s Tropical Rainfall Measurement Mission

(TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is

addressed by comparison of PR QPEs with reference values derived from ground-based measurements using

NOAA/NSSL ground radar–based National Mosaic and QPE system (NMQ/Q2). A preliminary investi-

gation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a

3-month data sample in the southern part of the United States. The primary contribution of this study is the

presentation of the detailed steps required to derive a trustworthy reference rainfall dataset from Q2 at the

PR pixel resolution. It relies on a bias correction and a radar quality index, both of which provide a basis to

filter out the less trustworthy Q2 values. Several aspects of PR errors are revealed and quantified including

sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall-

rate distributions, spatial representativeness of error, and separation of systematic biases and random errors.

The methodology and framework developed herein applies more generally to rainfall-rate estimates from

other sensors on board low-earth-orbiting satellites such as microwave imagers and dual-wavelength radars

such as with the Global Precipitation Measurement (GPM) mission.

1. Introduction

Reliable quantitative information on the spatial dis-

tribution of rainfall is essential for hydrologic and cli-

matic applications, which range from real-time flood

forecasting to evaluation of regional and global atmo-

spheric model simulations. Given their quasi-global cov-

erage, satellite-based quantitative rainfall estimates are

becoming widely used for such purposes. Converting

satellite measurements into quantitative precipitation

estimates poses challenges. The link between the ob-

servations and surface rain rates depends on the cali-

bration and operating protocol of the instrument itself,

the spatial heterogeneity of the rain fields (e.g., co-

existence of convective and stratiform precipitation

within a single instrumental field of view and vertical

heterogeneity of rainfall), the indirect nature of the

measurement, and the retrieval algorithm used. As

underlined by the Program to Evaluate High Resolu-

tion Precipitation Products (Turk et al. 2008) led by the

International Precipitation Working Group (IPWG; see

http://www.isac.cnr.it/;ipwg/), characterizing the error

structure of satellite rainfall products is recognized as

a major issue for the usefulness of the estimates (Yang

et al. 2006; Zeweldi and Gebremichael 2009; Sapiano
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and Arkin 2009; Wolff and Fisher 2009). The error

characterization is needed for data assimilation and

climate analysis (Stephens and Kummerow 2007) and

more specifically over land in hydrological modeling of

natural hazards and budgeting water resources (Grimes

and Diop 2003; Lebel et al. 2009).

In this study, we focus primarily on the Tropical

Rainfall Measurement Mission (TRMM) Precipitation

Radar (PR) quantitative precipitation estimation (QPE)

at ground. The methodology presented herein would

equally apply to all satellite precipitation products—in

particular those on board low-earth-orbiting satellites.

The TRMM PR is currently the only active instrument

measuring rainfall from a satellite platform conjointly

with a radiometer [TRMM Microwave Imager (TMI)].

PR rainfall estimates are often considered as a reference

for TMI-based rainfall estimates (e.g., Yang et al. 2006;

Wolff and Fisher 2008). It impacts rain estimates from

polar-orbiting passive microwave measurements and a

number of satellite-based high-resolution precipitation

products (Ebert 2007; Bergès et al. 2010; Ushio et al.

2006). Given the variety of potential sources of error in

PR-based QPE and the impact of correction algorithms,

the only practical solution is to evaluate PR QPE with

respect to an external, independent reference rainfall

dataset. The reference is derived from high-resolution

ground validation measurements using NOAA/National

Severe Storms Laboratory (NSSL) ground radar–based

National Mosaic and QPE system (NMQ; Zhang et al.

2011). These products yield instantaneous rainfall-rate

products over vast regions including regions of the con-

terminous United States (CONUS) covered by Next

Generation Weather Radar (NEXRAD) data. While a

number of studies have investigated the quality of PR

estimates in various regions of the world (e.g., Adeyewa

and Nakamura 2003; Wolff and Fisher 2008; 2009;

Amitai et al. 2009, 2012), our aim is to perform a sys-

tematic and comprehensive evaluation for regions over

the southern CONUS. We will characterize errors in PR

estimates at the pixel measurement scale in order to

minimize additional uncertainties caused by resampling.

Systematic and stochastic errors of PR estimates will be

documented in terms of bias and spatial structure.

One should note that it is not possible to ‘‘validate’’

the PR estimates in a strict sense because independent

rainfall estimates with no uncertainty do not exist. Many

errors affect the estimation of rainfall from ground-

based radars, like nonuniform beam filling, conversion

of reflectivity to rain intensity, and calibration. While we

do not know the truth at ground, the available inde-

pendent measurements do provide a useful reference to

help identify possible biases and the general levels of

uncertainty associated with PR estimates. The reference

rainfall accuracy issue will be investigated by systemat-

ically comparing PR estimates with different references

at ground. Three levels of processing to remove biases

characterize these references.

Rainfall estimates from low-earth-orbiting satellites

suffer from their poor temporal sampling (Wolff and

Fisher 2008; 2009; Lin and Hou 2008). Hence, repre-

sentative samples of direct comparisons between in-

stantaneous coincident measurements from ground

and space are difficult to achieve without a sufficient

number of overpasses. This study uses three months

(March–May 2011) of satellite overpasses over the lower

CONUS. The data are pixel matched in both time and

space, and statistics are provided for comparing refer-

ence rain intensities to satellite-based estimates. The

quasi-instantaneous matching is performed at the scale of

the PR measurement scale (4.5 3 4.5 km2).

The PR data and steps required to refine the Q2

ground-based rainfall to arrive at the reference rainfall

used for comparisons are presented in section 2. Section 3

assesses the ability of PR rain retrievals to represent the

rainfall variability derived from the reference data in

terms of rainfall detectability, sensitivity, and spatial

structure. Section 4 provides an empirical error model

of the PR estimates versus reference rainfall and seg-

regates systematic and random error. The paper is

closed with concluding remarks in section 5.

2. Data sources

One of the first challenges encountered is the lack

of knowledge about the true averaged rainfall for the

spatial domains considered. One wants to compare in-

stantaneous satellite rainfall estimates R(A) with refer-

ence rainfall Rref(A) for a spatial domain A (which may

be a satellite mesh, watershed, etc.) to characterize the

accuracy of the satellite QPEs. The true (and unknown)

area-averaged rainfall accumulation, denoted Rtrue(A),

is written as

Rtrue(A) 5
1

A

ð ð
R(x) dx, (1)

where x is the location vector. The reference rainfall

Rref(A) is a proxy of Rtrue(A). The final products of the

satellite data processing are gridded rainfall fields. Sat-

ellite QPEs may then be written as

R(A) 5
1

N
�
N

i51

R(ai), (2)

where ai denotes a satellite pixel and N is the number of

pixels covering the domain of interest. The reference
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data Rref(A) used to evaluate the satellite estimates

should spatially match the corresponding true rainfall

averaged over the same area A.

a. Original ground-based products

The NOAA/NSSL NMQ/Q2 (http://nmq.ou.edu;

Zhang et al. 2011) is a set of experimental radar products

comprising high-resolution (0.018, 5 min) instantaneous

rainfall-rate mosaics available over CONUS. The NMQ

system combines information from all ground-based

radars comprising the Weather Surveillance Radar-1988

Doppler (WSR-88D) network (NEXRAD), mosaics re-

flectivity data onto a common 3D grid, and estimates

surface rainfall accumulations and types to arrive at

accurate ground-based estimates of rainfall (Zhang

et al. 2005; Lakshmanan et al. 2007; Vasiloff et al. 2007;

Kitzmiller et al. 2011). Figure 1 shows an example of

CONUS coverage of Q2 rainfall at 0725 UTC on

11 April 2011 highlighting several rainy systems associ-

ated with orography in the west and a wide frontal system

in the central part of the domain.

At hourly time step, Q2 adjusts radar estimates with

automated rain gauge networks using a spatially vari-

able bias multiplicative factor. A radar quality index

(RQI) is produced at the (0.018, 5 min) resolution. While

the true quality of the Q2 QPEs varies in space and time

because of a number of complicating factors [e.g., mea-

surements errors, nonprecipitation echoes, uncertainties

in Z–R relationships, and variability in the vertical pro-

file of reflectivity (VPR)], the RQI represents the radar

QPE uncertainty associated with reflectivity changes

with height and near the melting layer (Zhang et al.

2011). It applies to the radar beam used for QPE—that

is, hybrid scan reflectivity comprising elevation angles

closest to the surface. The RQI field is composed of

a static part relative to the radar beam sampling char-

acteristics such as percent blockage, beam height and

width, and a dynamic part accounting for the freezing

level height. The static part is illustrated in Fig. 1, where

the reduced radar coverage in the western part of the

United States results in lower RQI values. The dynamic

part causes the RQI values to decrease in cool season

months when the freezing level is lower and the radar

samples the melting layer and the ice phase at closer

range, and to increase in the warm season when the

freezing level is at higher altitudes. This is illustrated in

Fig. 1, where the freezing level is lower behind a cold

frontal system, which deteriorates the already limited

coverage in the western part of CONUS.

The original Q2 products utilized in this study are

(i) the radar-only instantaneous rain-rate National Mo-

saic updated every 5 min, (ii) the radar-only rain-rate

National Mosaic at hourly time step, (iii) the hourly rain

gauge–corrected National Mosaic product, and (iv) the

RQI. The primary Q2 product used for comparison

with PR is the radar-only instantaneous rain-rate mo-

saic. Current Q2 radar products do not include an in-

stantaneous gauge-adjusted rain-rate mosaic. For this

study and similarly to Amitai et al. (2009, 2012), a second

reference rainfall was derived from an instantaneous

bias-corrected Q2 product. Pixel-by-pixel ratios between

the hourly gauge-adjusted and the hourly radar-only

products are calculated. These hourly ratios are then

applied as multiplicative adjustment factors to the radar-

only 5-min product. Extreme adjustment factors [outside

the (0.1–10) range] are discarded and no comparison is

performed with PR for the corresponding Q2 values.

Thus, the gauge adjustment also serves as a data quality

control procedure. A subsequent reference is derived

from the bias-corrected Q2 product filtered using the

RQI index. Only the rain rates associated with the best

RQI values (i.e., equal to 1) were retained. This se-

lection ensures that only Q2 estimates representing the

best measurements conditions (i.e., no beam blockage

and radar beam below the melting level of rainfall) are

retained.

As radar-based only, the first reference may have

issues like nonuniform beamfilling because of VPR ef-

fects, inaccurate conversion from reflectivity to rain in-

tensity, and calibration errors. The blending with rain

gauge data in the second reference should significantly

mitigate these biases and provide a more accurate ref-

erence. The filtering through the radar quality index for

the last level of processing eliminates a large part of the

impact of the VPR. One should note these incremen-

tal improvements of the Q2 products may not screen

out all possible errors in ground-based radar estimates.

In particular, the gauge adjustment may suffer from

FIG. 1. Map of CONUS area with NMQ/Q2 instantaneous rain

rates at 0725 UTC on 7 Apr 2011. The red area shows the good

quality radar coverage corresponding to radar quality index equal

to 1. The shaded area is not sampled by the TRMM PR.
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representativeness errors from scarce rain gauge net-

work density and from the difference of the temporal

resolution between the hourly adjustment factors ap-

plied downscale to 5-min Q2 rain rates. Nevertheless,

they provide the best possible reference at the scale

of PR in terms of sampling conditions and unbiased

estimates.

b. Q2-based reference rainfall

In the current study, all significant rain fields observed

coincidentally by TRMM overpasses and the NEXRAD

radar network from March to May 2011 are collected.

The Q2 products closest in time to the TRMM satellite

local overpass schedule time are used. To compute the

reference rainfall, a block-Q2 rainfall pixel is computed

to match each PR pixel in case of TRMM overpasses in

a similar manner to Kirstetter et al. (2010, 2012).

Although the quantitative interpretation of the weather

radar signal in terms of rainfall may be complex, radars

enable a reliable evaluation of area-averaged rainfall

estimates. The spatial variability of rainfall at small

scales and the resolution difference between radar and

PR (as much as 2 orders of magnitude in area) may

cause significant discrepancies in the statistical sam-

pling properties and adds statistical noise in the com-

parison (see e.g., Ciach and Krajewski 1999 for a similar

issue when comparing point-measurement rain gauge

to area-rainfall radar data). An approximate 2.5-km

FIG. 2. Maps of instantaneous rain rates at 0725 UTC on 7 Apr 2011: (top left) the NMQ/Q2 product, (top right)

the equivalent reference rainfall Rref, (bottom left) the robust reference set, and (bottom right) the nonrobust

reference set.
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radius around the center of the PR pixel location was

considered. All of the Q2 pixels (rainy and nonrainy)

found within this circular region were located to com-

pute unconditional mean rain rates for the Q2 at the PR

pixel scale. The numbers of Q2 pixels associated with

each PR pixel vary from case to case, but tend to average

about 25 (with native Q2 resolution being 1 km2). When

more than five Q2 pixels have missing values, the PR

and Q2 data are discarded from the comparison. To

estimate PR pixel–averaged ground rainfall accumula-

tion (and the associated sampling errors), a weighted

mean estimator is considered to determine the reference

rainfall Rref(A) over the PR pixel A from Q2 products.

As the representativeness of the rainfall sampled by PR

is related to the characteristics of the radar beam, the

weighting function is given by the PR beam pattern in-

side a PR pixel. The reference rainfall is therefore

Rref(A) 5
1

�
n

i51

vi

�
n

i51

viQ2(ai), with

vi 5

ð
u

mesh
(a

i
)

f 2(u, u0) du, (3)

where notations have been simplified for the sake of

convenience. Here Q2 denotes the Q2 rain-rate product

for the mesh ai. The value Rref(A) depends on the num-

ber n of Q2 meshes inside the PR pixel; the weights v are

derived from the two-way normalized power-gain func-

tion of the PR antenna f (assumed to be Gaussian) and

the beamwidth u0, and each vi is computed over the

domain umesh corresponding to the Q2 mesh ai. It is

assumed the PR resolution remains constant (circle of

approximately 5 km) whatever the radar beam off-nadir

inclination angle. Additional research may be needed to

take into account the deformation of the resolution with

off-nadir angle (Takahashi et al. 2006).

Two weighted standard errors are computed with the

reference rainfall. The first one is the weighted sample

standard deviation, which represents the variability of

the Q2 rainfall (at native resolution) inside the PR

pixel:

sfootprint 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V1

V2
1 2 V2

�
n

i51

vi[Q2(ai) 2 Rref(A)]2

s
, with

V1 5 �
n

i51

vi and V2 5 �
n

i51

v2
i . (4)

It is used to select the PR–reference pairs for which the

Rref(A) is trustworthy. The second one is the standard

deviation relative to the weighted mean Rref(A):

sref 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

V2
1

�
n

i51

[Q2(ai) � Rref(A)]2

s
. (5)

It allows us to assess the Rref(A) estimation quality.

Matched PR and Rref(A) estimates only exist at lo-

cations where both the PR and ground radars have taken

actual observations. This technique averages the mini-

mum number of Q2 meshes needed to produce spatially

coincident sample Rref(A) estimates. The advantages of

the current technique over gridded approaches are that

there is no interpolation, extrapolation, smoothing, or

oversampling of PR data. The PR rainfall statistical

characteristics are preserved because the product re-

mains untouched: the total rainfall amount, the total

rainy area, and the probability distribution function

(PDF) shapes. All of these properties may therefore be

compared to the reference at once.

Figure 2 shows an example of continuous mapping

of the weighted mean estimator for the reference rain-

fall Rref(A). The estimator is a smoother of the original

Q2 rain field. The maximum of the rainfall rate de-

creases from 145 to 130 mm h21. The total rainfall area

increases, mainly at the edges of the rain field. To avoid

a contamination of the PR–reference comparison by

the uncertainty on the ground reference, the reference

pixels were segregated into ‘‘robust’’ [Rref(A) . sfootprint]

and ‘‘nonrobust’’ [Rref(A) , sfootprint] estimators. This

procedure illustrated in Fig. 2 filters out the reference

values at the edges of the rain fields. Nonrobust refer-

ence values are discarded for quantitative comparison.

The robustness check is applied to the three Q2 products

considered for reference (native Q2, bias-corrected Q2,

and RQI1bias-corrected Q2). As an example for the

‘‘RQI1bias-corrected Q2’’ the averaged relative error

(sref/Rref) of the reference decreases from 832% to 16%.

The ratio of the mean error to the standard deviation of

the reference [sref/s(Rref)] decreases slightly from 5.6%

to 5.4%. This method of reference selection therefore

increases the reliability and representativeness of the

block-Q2 values that constitute our ground reference.

c. PR-based rainfall

The PR measures reflectivity profiles at Ku band. Sur-

face rain rates are estimated over the southern United

States up to a latitude of 378N (Fig. 1). Artifacts such as

contamination by surface backscatter, attenuation and

extinction of the signal, nonuniform beam filling, bright-

band effects and accuracy of the Z–R relationship (Wolff

and Fisher 2008) must be accounted for. In the present

study, the surface rain rate at each PR pixel location is a

standard TRMM product (2A25 v6) described in Iguchi

et al. (2000). The scan geometry and sampling rate of
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the PR lead to pixels spaced approximately 5.1 km cross

and along track over a 245-km-wide swath. The mini-

mum theoretical detectable rain rate by the PR is fixed

by its sensitivity and is about 17 dBZ, or ;0.5 mm h21.

d. Comparison samples

Several factors—including rainfall intermittency, dis-

crete temporal sampling of TRMM, and censoring of

reference values for required quality—reduce the num-

ber of comparison samples for reference and PR esti-

mates over the comparison period. Table 1 provides the

number of these samples for the reference values, in-

clusive and exclusive of nonrainy pixels. The compar-

ison sample sizes in Table 1 are primarily driven by the

number of rain events and the overpass frequency of

TRMM, then by the censoring of reference values. The

quality control in the bias adjustment discarded 26%

of original Q2 values and an additional 34% were fil-

tered using RQI. Note that after two levels of process-

ing and censoring, the comparison sample size for the

RQI1bias-corrected Q2 remains significant at 393 347.

This is credited to the large number of samples offered

by the high-resolution, gridded Q2 product.

To assess the representativeness of our spatially and

temporally limited samples, we compared the statistics

of the reference rainfall resampled to the PR pixel res-

olution with respect to the whole reference dataset

(CONUS-wide below 388N, which do not necessarily

match a TRMM overpass). Figure 3 shows quantile–

quantile plots between (i) the whole reference dataset

(x axis) and (ii) the subset of pixels that matched to PR

pixel resolution for the different reference datasets.

Table 2 provides values of the conditional mean and

standard deviation. The PR-resampled reference rain-

fall distribution does not show a clear deviation from

the 1:1 degree line compared to the whole distribu-

tion. The reference distributions are fairly stable given

the different censoring levels with the mean of the PR-

resampled distributions being within 7% of the one for

the whole dataset. We may therefore consider each ref-

erence dataset to be quite representative of the corre-

sponding whole rainfall distribution.

Similarly, we compared the different PR datasets to

assess the impact of Q2 censoring on their representa-

tiveness. Figure 4 shows quantile–quantile plots between

(i) the complete (‘‘native’’) PR dataset (x axis) and (ii)

the censored subsets according to the bias-corrected

and bias1RQI-corrected Q2 samples. Table 3 provides

values of the conditional mean and standard deviation

for each set. The different PR rainfall distributions do

not show a clear deviation from the 1:1 degree line

compared to the native PR rainfall distribution. The

means and standard deviations of the bias-corrected-

censored and bias1RQI-corrected-censored distributions

are less than 1% and around 10% higher, respectively.

We may therefore consider the representativeness of

each PR dataset, following censoring steps, to be quite

comparable to each other.

3. Rainfall data analysis

This section reviews the ability of PR rain retrievals

to represent the rainfall variability derived from the Q2

TABLE 1. Comparison samples for different reference datasets.

Including nonrainy

(0 mm h21) Rainy only

Native Q2 35 349 900 984 596

Bias-corrected Q2 35 342 653 723 212

Bias1RQI-corrected Q2 35 342 653 392 713

FIG. 3. Quantile–quantile plots for reference PR-sampled and whole rainfall distribution comparison for (a) native, (b) bias-corrected,

and (c) bias1RQI-corrected references. The positions of 10, 50, and 95 percentiles are showed for each distribution.
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data. First, contingency tables provide information on

the reference rainfall reliability and on the influence of

PR sensitivity to detect rainfall occurrence. The PDF of

rainfall estimates provide in-depth information on the

sensor’s global ability to capture rain regimes given the

influence of its sensitivity and the several factors (at-

tenuation of the radar signal, nonuniform beam filling,

and accuracy of the Z–R relationship). Another feature

to compare is the spatial structure of rainfall fields.

a. Contingency tables

Table 4 shows the contingency tables for PR rain/

no-rain occurrence relative to the references with per-

centile of hits (H; both Q2 and PR detect rain), misses

(M; PR does not detect rain while Q2 does), false alarms

(F; PR detects rain while Q2 does not), and correct re-

jections (C; both Q2 and PR do not detect rain). The

reference data are separated into three subsamples:

the nonrobust set (Rref , sfootprint; see section 2b), the

robust set (Rref . sfootprint) and the ‘‘whole’’ Q2 set.

Reference null values are considered as robust. All co-

incident and collocated PR values are considered and

sorted according to the reference samples. Table 5 pro-

vides the mean rainfall values according to the same

contingency tables with PR on the left-hand side of the

‘‘/’’ sign and the reference on the right-hand side.

The false detections (M 1 F) of PR are mainly asso-

ciated with the nonrobust reference data, with a rate of

more than 80% for all nonrobust sets, while around 50%

are improperly classified when using the robust refer-

ence dataset. The misses (M) are the main contributors

to the false detection population (i.e., approximately

85% for the whole dataset). These misses of PR are co-

incident with low reference values (less than 0.15 mm h21

for the nonrobust set for all references; see Table 5). By

comparison, the correct detections (H 1 C) of PR are

mainly associated with the robust reference set from

45% to 52%. For the same robust reference sets, the hits

of PR are coincident with the higher reference values

with mean rainfall rates more than 6 mm h21. One

should note for all references that (i) the mean PR (F)

values are significantly lower than the PR (H) values and

(ii) the mean reference (M) values are significantly

lower than the mean reference (H) values. Finally, both

mean reference and PR values are higher for the ro-

bust Q2 set than for the nonrobust Q2 set. Table 6

shows the discarded rain volumes in question; the misses

of PR represent less than 12% of the reference rainfall

volume, while false alarms represent less than 16% of

the PR rainfall volume. Note the lowest values (less

than 8%) are obtained with the bias1RQI-corrected Q2

reference.

The impact of the reference rainfall on the contin-

gency scores is shown in Fig. 5. Contingency values are

used to compute probability of detection (POD), false

alarm rates (FAR), and critical success index (CSI).

Scores are generally better for the robust reference than

for the nonrobust one. Within this category, CSI shows

a general increase with sequential Q2 data quality steps,

while the FAR shows the lowest values with additional

processing of the Q2 reference. A general convergence

between the Q2 reference and PR estimates is therefore

acknowledged as a function of the reference accuracy.

TABLE 2. Conditional mean and standard deviation of whole- and

‘‘PR-resampled’’ references datasets.

PR-resampled

dataset

Whole-reference

dataset

Mean Std dev Mean Std dev

Native Q2 1.64 6.55 1.57 6.30

Bias-corrected Q2 2.00 6.99 1.95 6.84

Bias 1 RQI-corrected Q2 1.98 7.26 2.13 7.37

FIG. 4. Quantile–quantile plots for PR ‘‘native–reference-sampled,’’

‘‘bias-corrected–reference-sampled,’’ and ‘‘bias1RQI-corrected–

reference-sampled’’ rainfall distribution comparison. The positions

of 10, 50, and 95 percentiles are shown for each distribution.

TABLE 3. Conditional mean and standard deviation of PR

estimates for different references.

Mean Std dev

Native Q2 4.21 6.91

Bias-corrected Q2 4.24 6.94

Bias1RQI-corrected Q2 4.65 7.47
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Considering that 80% of the whole reference rain-rate

dataset that are not detected by the PR are lower than

0.3 mm h21, the sensitivity of PR is close to this value.

The misses are likely associated with high intermittency

and/or the ‘‘rain/no-rain’’ limits of rain fields. These

features are missed by the PR because the rain rates are

close to the detection threshold. Further, we calculated

PR’s POD for different rainfall-rate thresholds (not

shown) using the robust, bias1RQI-corrected Q2 ref-

erence. The POD increased from 56% at the rain/

no-rain detection level to 71% using a threshold of

0.5 mm h21 and leveled off to 76% for 1.0 mm h21. This

suggests that the PR can indeed capture the main rain

regions but loses the weaker echoes (Schumacher and

Houze 2000), probably because of its sensitivity. The

false alarms may be due to shallow rain not detected by

ground-based radars when occurring at significant dis-

tance (greater than 100 km). This is supported by the

positive impact of the RQI on the false alarm rate, which

as seen on Fig. 1 limits the range of ground radar data

selection.

b. Probability distributions by occurrence
and rain volume

Hereafter, the PR rain estimates are the conditional

ones (nonzero rainfall) coincident and collocated with

nonzero reference estimates. The robust reference rain-

rate datasets are used. Two PDFs for PR versus refer-

ence rainfall are computed and shown in Fig. 6: (i) the

PDF by occurrence (PDFc) and (ii) the PDF by rain

volume (PDFv) (Wolff and Fisher 2009; Amitai et al.

2009, 2012). The PDFc provides statistical information

on the rain-rate distribution and highlights the esti-

mate’s sensitivity as a function of rain rate; it is com-

puted as a ratio between the number of the rain rates

inside each bin and the total number of rain rates. The

PDFv represents the relative contribution of each rain-

rate bin to the total rainfall volume; it is computed as

a ratio between the sum of the rain rates inside each bin

and the total sum of rain rates. It is therefore an im-

portant characteristic of the instantaneous products

TABLE 4. Contingency table for PR relative to the three refer-

ences. The results are provided for robust/non robust reference

data according to a criterion based on the variability of the Q2

rainfall (at native resolution) inside the PR pixel (Rref . sfootprint).

PR estimates

Native Q2

. 0 5 0 S estimates

. 0 Whole set 26% 6% 320 376

Robust 45% 15% 250 836

Nonrobust 12% 0% 69 540

5 0 Whole set 68% 0.% 664 220

Robust 40% 0.% 167 986

Nonrobust 88% 0.% 496 234

S reference Whole set 921 758 62 838 984 596

Robust 355 984 62 838 418 822

Nonrobust 545 774 0 565 774

PR Estimates

Bias-corrected Q2

. 0 5 0 S estimates

. 0 Whole set 34% 10% 316 602

Robust 48% 21% 240 342

Nonrobust 20% 0% 76 260

5 0 Whole set 56% 0.% 406 610

Robust 31% 0.% 108 218

Nonrobust 80% 0.% 298 392

S reference Whole set 650 567 72 645 723 212

Robust 275 915 72 645 348 560

Nonrobust 374 652 0 374 652

PR estimates

Bias1RQI-corrected Q2

. 0 5 0 S estimates

. 0 Whole set 32% 3% 137 992

Robust 52% 7% 94 614

Nonrobust 18% 0% 43 178

5 0 Whole set 65% 0.% 254 921

Robust 41% 0.% 64 620

Nonrobust 82% 0.% 190 301

S reference Whole set 380 087 12 626 392 713

Robust 146 608 12 626 159 234

Nonrobust 233 479 0 233 479

TABLE 5. Mean rainfall values associated to the contingency table

for PR/references.

PR estimates

Native Q2

. 0 5 0

. 0 Whole set 4.65/5.06 2.41/0.00

Robust 5.07/6.20 2.41/0.00

Nonrobust 3.51/1.97 —

5 0 Whole set 0.00/0.31 —

Robust 0.00/0.92

Nonrobust 0.00/0.10

PR estimates

Bias-corrected Q2

. 0 5 0

. 0 Whole set 4.83/4.71 2.28/0.00

Robust 5.38/6.07 2.28/0.00

Nonrobust 3.61/1.73 —

5 0 Whole set 0.00/0.38 —

Robust 0.00/1.05

Nonrobust 0.00/0.14

PR estimates

Bias1RQI-corrected Q2

. 0 5 0

. 0 Whole set 4.92/5.45 2.07/0.00

Robust 5.60/7.27 2.07/0.00

Nonrobust 3.63/2.01 —

5 0 Whole set 0.00/0.28 —

Robust 0.00/0.74

Nonrobust 0.00/0.12
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from the perspective of building merged rainfall accu-

mulations; it enables a comparison of PDFs based on

estimates derived from instruments characterized by

different detection limits (in particular at weak in-

tensities).

The rain rates of PR exhibit similar PDFc for all

references. Compared to references’ PDFc, PR tends

to overestimate light rain rates (in the interval [0.3–

0.5] mm h21). But, PR demonstrates poor detection of

the lightest rain rates (below ;0.3 mm h21) compared

to the two bias-corrected references. This is consistent

with the concept of rain area ‘‘edges’’ that might be

only partially detected by PR, resulting in misses as-

sociated with low rain rates (see previous section). PR

PDFc presents similar features with references for rain

rates .;1 mm h21. One may note the improved con-

vergence between PR and reference rainfall PDFc in the

rain-rate interval [0.5–1.0] mm h21 with the sequential

Q2 data quality steps.

Despite the low occurrence of relatively high rain

rates (.10 mm h21), their contribution to the total

rainfall volume is significant (greater than 60%). As a

consequence, the mode of PDFv for PR is shifted to-

ward lower rain rates (;18 mm h21) compared to the

reference’s mode (;60 mm h21), which is in agreement

with the results found in Amitai et al. (2006, 2009). This

is attributed to high rainfall rates (.10 mm h21), which

are underestimated by PR because insufficient correc-

tion due to attenuation losses for the 2A25 version 6 (as

suggested by Wolff and Fisher (2008)), nonuniform

beam filling effects, and/or inaccurate conversion from

reflectivity to rain intensity. Note that it is difficult to

distinguish between these different influences by com-

paring solely rain rates at ground.

TABLE 6. Discarded rain volumes from PR due to misses relative to references and rain volume implied in the false alarms relative to

robust references.

Native Q2 Bias-corrected Q2 Bias1RQI-corrected Q2

Excess of rain volume implied in false alarms 13.70% 15.45% 5.36%

Discarded rain volume due to misses 11.70% 10.07% 7.46%

FIG. 5. CSI, POD, and FAR, and for the three references and partitioned as a function of robustness.
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c. Spatial structure of estimated rainfall fields

For hydrological applications, the total amount of

water over a basin as well as the location and spatial

correlation within the catchment might be important. It

is therefore relevant to assess the ability of space-based

estimates to retrieve the spatial structure of rainfall

fields as seen by the reference. To describe the structure

by a relatively simple function, we use a normalized

variogram, which represents the spatial correlation of

the rain field (Journel and Huijbregts 1978; Lebel et al.

1987; Kirstetter et al. 2010, 2012). An appropriate model

is fit to the empirical normalized variogram. Among the

set of classical models, the exponential model was found

most suitable. It is expressed as

g(h) 5 C0 1 (C 2 C0)

�
1 2 exp 2

h

d

� ��
, (6)

where the three parameters are the nugget (C0), the sill

(C), and the variogram range parameter (d). The ex-

ponential model reaches its sill asymptotically as h / ‘.

The ‘‘effective range’’ corresponds to the mean decor-

relation distance of the estimates. It is the distance

where the variogram reaches 95% of its maximum and

corresponds to 3d for the exponential model. The nug-

get parameter can be used to describe a possible dis-

continuity of the variogram at the origin that may be due

to (i) the process variability at scales poorly resolved by

the observation system and/or (ii) measurement errors.

In the following, these parameters are used to charac-

terize the structure of rainfall.

Spatially normalized variograms of references and PR

estimates are displayed in Fig. 7. Table 7 summarizes the

parameters of these variograms. The variogram ranges

of PR are quite similar to the three references’ (ap-

proximately 18 km). The nugget values, however, are more

distinct. While it is ;32% for the Q2 references, it is

significantly higher for PR (approximately 45% of the

sill). These decorrelations of spatial structure at short

interdistances suggest the resolution of the PR mea-

surements may be limited when sampling the variability

of small, disorganized rainfall structures associated with

localized convection. The smaller reference nugget is an

indication of the better sampling of the rain field by the

reference rainfall, which is an issue previously discussed

in section 2b. It must also be noted that the upscaling

of the reference estimates from their original resolution

to the PR resolution tends to smooth the original Q2

rain field. The comparatively higher nugget with PR may

be caused by the rain intermittency, contamination by

surface backscatter, attenuation of the signal, bright-

band effects, or inaccuracy of the Z–R relationship. An

interesting feature is that both sensors present a slightly

decreasing nugget with the sequential Q2 data quality

steps. This feature could be attributed to the censoring of

the reference, which filters out complicated sampling

situations for the ground-based radars.

4. Quantitative error modeling

a. Correlations and biases

Scatterplots of PR versus reference rainfall are pre-

sented for the three sets of Q2 reference in Fig. 8.

Classical performance criteria of satellite-based rainfall

estimation compared to reference values are listed in

Table 8: correlation coefficient and mean relative error

(MRE), expressed in percentage and defined as MRE 5

(PRmean 2 Refmean)/Refmean. The comparisons between

the PR and reference estimates are assessed on a point-

to-point basis. A rainy pixel is included in the statistics

if both PR and the reference are nonzero to emphasize

the PR ability to quantify precipitation when it is

FIG. 6. Probability distributions of rain rates for the PR rainfall and for the (a) native-, (b) bias-corrected-, and (c) bias1RQI-corrected–

reference rainfall. The robust reference rain rates are used. The solid and dashed–dotted lines represent the distribution by volume PDFv

and the distribution by occurrence PDFc, respectively, while the gray and black lines represent the distributions for references and PR,

respectively. Note that the x axis is in log scale.
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raining (the case of PR having zero rainfall when it is

raining has been addressed in section 3a). This is par-

ticularly significant given the significant misses of PR.

The two sensors present coherent mean and standard

deviation values as long as the representativeness of

the comparison samples are kept in mind. As expected,

the means of the three PR sets are quite similar. In all

cases the PR underestimates the reference mean values

by ;17%. This is once again attributed to the significant

underestimation of the higher rain rates in the 2A25-v6

products, presumably because of a combination of several

factors like attenuation losses, inaccurate Z2R relation-

ship, and/or nonuniform beam filling. The variations of

the reference mean for the three sets explain in large part

the variations in the apparent bias of PR relative to the

reference. The native reference set is affected by (i) a

global overestimation of rain rates, which could be due

to the inaccuracy of the Z2R relationship, and (ii) an

underestimation of rain rates linked to partial beam

blockage and VPR effects (i.e., overshooting above the

melting layer by the radar beam far from the radar).

The gauge-based bias correction of the native Q2 prod-

uct decreases the mean reference values, so the negative

bias of PR is apparently improved. The additional RQI

filtering removes the underestimation of Q2 at far range

so the bias of PR is degraded. The reference shows higher

standard deviation than the PR in coherence with the

PDF features presented in section 3b.

The correlation coefficients between PR and Q2 ref-

erence estimates are moderate (around 0.6). One could

note the best correlation between the two sensors is

achieved with the bias1RQI-corrected reference. The

differences between the two products on a point-to-

point comparison basis can be attributed to sample vol-

ume discrepancies, timing and navigation mismatches,

and the uncertainties in the respective rainfall estimates.

The significantly greater nugget in the PR variogram than

in the reference variogram is also an indication of the

greater level of noise in the PR rain field spatial struc-

ture, which may limit the correlation between the two

series on a point-to-point comparison.

b. Error model

The departures of PR estimates from the references

are analyzed in this section on a point-to-point basis.

FIG. 7. Spatial variograms for (a),(c),(e) reference and (b),(d),(f) PR for the (a),(b) native, (c),(d) bias-corrected,

and (e),(f) bias1RQI-corrected reference. The empirical variograms are plotted with crosses, and the models fitted

are represented by the thick black lines.

TABLE 7. Parameters of the normalized variograms (exponential

model) for references and PR. The effective range values are in-

dicated. The nugget is expressed as a percentage of the normalized

sill.

Reference PR

Nugget

(% sill)

Range

(km)

Nugget

(% sill)

Range

(km)

Native Q2 34% 17 48% 16

Bias-corrected Q2 32% 15 48% 16

Bias1RQI-corrected Q2 31.5% 15.5 45% 15
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The uncertainties associated with satellite estimates of

rainfall include systematic errors as well as random ef-

fects from several sources (Yang et al. 2006; Kirstetter

et al. 2012). There is a fundamental issue in segregating

the proportion of the scatter due to purely random error

and the proportion due to conditional biases of the PR

estimates that may be either positive or negative, pro-

ducing additional scatter.

With the true rainfall being unknown, the residuals

are defined as the difference « 5 (R 2 Rref) between the

reference rainfall (Rref) and the satellite estimates (R).

Only pairs for which Rref and R are both nonzero are

considered in the calculations in order to emphasize the

PR ability to quantify precipitation where it is raining.

The sets of « distributions are studied using the gen-

eralized additive models for location, scale, and shape

(GAMLSS; Rigby and Stasinopoulos 2005) technique.

As a preliminary step, Rref is considered as the main

driving (explanatory) variable conditioning the departures

of PR estimates from references.

Generalized linear models for location, scale, and

shape aim at modeling the parameters of a response

variable’s distribution. Two main assumptions are made:

1) the response variable « is a random variable following

a known parametric distribution with density f(« j m, s)

conditional on the parameters (m, s), and 2) the obser-

vations « are mutually independent given the parameter

vectors (m, s). Each parameter is modeled as a func-

tion of Rref (the explanatory variable) using monotonic

(linear/nonlinear or smooth) link functions. More de-

tails are provided by Rigby and Stasinopoulos (2001,

2005), Akantziliotou Rigby and Stasinopoulos (2002),

and Stasinopoulos and Rigby (2007). A wide variety of

distributional forms are available within GAMLSS. To

simplify and distinguish between systematic and random

errors, a number of conditional densities with the first

two moments as parameters are considered here: the

location m (mean) describing systematic errors and the

scale s (standard deviation) representative of random

errors. For a given conditional distribution of the re-

sponse variable, the conditional quantiles can be ex-

pressed as a function of the location and scale. GAMLSS

is best fitted using the algorithm GAMLSS in the R

software package (Stasinopoulos and Rigby 2007). The

rainfall trends for each parameter are fitted using locally

weighted scatterplot smoothing (LOESS), which are

more flexible than polynomials or fractional polyno-

mials for modeling complex nonlinear relationships. It is a

TABLE 8. Performance criteria values for PR estimates: mean, standard deviation, MRE, and correlation (R) with respect to references.

Only the reliable Q2 data are kept (see section 2b) for references.

Native Q2 Bias-corrected Q2 Bias1RQI-corrected Q2

PR Reference PR Reference PR Reference PR

Mean 6.20 5.07 6.07 5.38 7.27 5.6

Std dev 12.53 7.80 12.04 8.03 13.76 8.26

MRE/reference (%) — 218% — 211% — 223%

Correlation/reference — 0.61 — 0.6 — 0.64

FIG. 8. Scattergraphs of PR vs (a) native-, (b) bias-corrected-, and (c) bias1RQI-corrected–reference rainfall (mm h21). The first bisectors

(solid lines) are displayed.
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polynomial curve determined by Rref, which is fitted locally

by weighted polynomial regression, giving more weight to

points near the point whose response is being estimated

and less weight to points farther away (see Cleveland

et al. 1991).

Several two-parameter density functions (lognormal,

normal, reverse gumbel, logistic, gamma, etc.) have been

tested to fit the data. The distributions of residuals (not

shown here) were generally found to be unimodal and

asymmetric. The goodness of fit on the whole dataset

has been checked by investigating the Akaike infor-

mation criteria (AIC) for each of the semiparametric

density fits. The reverse Gumbel distribution (f («) 5 (1/s)

(2[(« 2 m)/s] 2 expf2[(« 2 m)/s]g), where m is the mean

and s the standard deviation of the residual population)

was found to be the most appropriate. Figure 9 shows the

residuals as a function of Rref as well as the fitted GAM

model for PR in the representative case of the

bias1RQI-corrected reference. The conditional PDF of

residuals « present a high conditional shift versus the

0 line and a high conditional spread. Note that for Rref .

;50 mm h21, the model is quite undetermined because

of the lack of observed residuals. All models show that

PR present a tendency to overestimate light rain rates

(the median of residuals is positive) and underestimate

higher rain rates (negative median of residuals); that is,

PR underestimates Rref 5 20 mm h21 rain rates with an

occurrence of 70% and with a representative bias of

27 mm h21 and underestimates Rref 5 40 mm h21 with

an occurrence of 92% and with a representative bias of

224 mm h21. This is likely to be once again due to an

inaccurate Z2R relationship, nonuniform beam filling,

and/or insufficient correction of PR attenuation for

heavier rain rates.

In case of a nonsymmetric density for residuals or in

case of extreme values, the median is preferred to the

expectation for a better representativeness of the sys-

tematic component of the residuals. The systematic

error component (i.e., conditional bias) is therefore

described by the conditional median of these distribu-

tions. For the same reason we consider the interquantile

(q90–q10) value to assess the random part of the error.

It is computed after having applied the error separa-

tion variance correction to the conditional standard

deviation s extracted from the GAM model. The error

separation variance concept (Ciach and Krajewski 1999;

Teo and Grimes 2007; Kirstetter et al. 2010) makes it

possible to evaluate the variance of the PR with respect

to the true unknown rainfall. We assume the errors on

the reference rainfall and on the PR estimates to be

uncorrelated. Introducing the true rainfall Rtrue in the

expression of the variance of the residuals between the

PR and reference values leads to (see Kirstetter et al.

2010 for details)

s(R 2 Rtrue) 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(«) 2 s2

ref

q
. (7)

Fortunately, as can be seen in Fig. 10, the reference es-

timation standard deviations are lower than the standard

deviations of the PR–reference residuals, indicating the

reference values to be comparatively reliable to evalu-

ate PR. The standard deviation of the PR residuals with

respect to the true rainfall is significantly reduced

FIG. 9. (left) PR residuals represented vs bias1RQI-corrected reference and (right) the GAM model fitted is

represented by [5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95] conditional quantile lines.
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compared with the PR–reference residual standard de-

viation. One may note the standard deviations increase

up to a reference value (;50 mm h21) beyond which we

believe sampling issues lead to a stabilization or a de-

crease of the standard deviations. We therefore apply

the modeling up to this limit only. As ;98% of the

reference values are under his limit, this choice will not

lead to any significant lack of representativeness.

Figure 11 shows the conditional biases and random

errors of PR relative to the three Q2 references. The

global bias (see previous section and Table 8) of PR

results from a balance between overestimation of light

rain rates and underestimation of high rain rates. The

underestimation is more frequent, inducing a global neg-

ative bias. The conditional biases of PR relative to the

references are quite similar. Note the bias-corrected con-

ditional bias is shifted to the right compared to the native

one, so overestimation of light rain rates is more significant

and the underestimation of higher rain rates less pro-

nounced, which is consistent with the reduced negative

global bias for this specific reference (see Table 8). Note

also the negative slope of the bias1RQI-corrected con-

ditional bias is lower than for the two other (the condi-

tional bias is less significant), which could be seen as a

sign of a better convergence between PR estimates and

this Q2 reference. This is confirmed when considering the

random part of error. The bias1RQI-corrected curve

shows the lowest random errors up to Rref 5 4 mm h21

(more than 65% of the reference rain rates are under this

value). The random error increases consistently with Rref.

It is systematically higher for the bias-corrected than for

the native reference—a result consistent when apply-

ing a bias correction (Ciach et al. 2000). It represents

a significant part of error, suggesting that other factors

than Rref could be considered to evaluate the error of PR

rain-rate estimates at ground.

5. Conclusions

In preparation for National Aeronautics and Space

Administration (NASA)’s future Global Precipitation

Measurement (GPM) mission, a 3-month data sample of

TRMM PR–based rainfall products have been com-

pared to surface rainfall derived from Q2 over the lower

conterminous United States. The major advantage of

the Q2 ground-based reference dataset is its resolution

in both time and space commensurate with rainfall esti-

mates derived from sensors on board low-earth-orbiting

satellites. The comparisons have been performed at the

PR pixel resolution. A framework is proposed herein to

address methodological issues so as to provide a pre-

liminary version of an error model for satellite QPEs.

The error model is empirically derived and is thus prone

to be specific to the dataset considered and the PR/Q2

data processing implemented. However, the results show

similarities with previous rainfall comparisons over West

Africa and thus give credence to the developed frame-

work (Kirstetter et al. 2012). Results from the error

model presented herein provide insights into the most

significant characteristics of PR rainfall retrieval errors

that need to be taken into account when such data are

used in applications.

A consistent result noted throughout each analysis

was the increased consistency between PR and the Q2

reference following sequential data quality control steps,

including bias correction using rain gauges and filtering

using the radar quality index (RQI) product. This finding,

alone, highlights the importance of matching the scales

and refining the accuracy of the reference dataset as

much as possible before reaching meaningful conclu-

sions about the PR accuracy.

Different error sources were identified and quanti-

fied for PR rain-rate estimates. The most significant

error is most likely due to a combination of inaccurate

Z2R relationship, nonuniform beam filling, and/or

attenuation of the PR radar signal. It is difficult to

distinguish between these different influences by

comparing solely rain rates at ground. Segregating rain

from no-rain boundaries is also a driving contributor

to the PR rain-rate errors, probably linked to the lack

of sensitivity in the most inhomogeneous and light

FIG. 10. Standard deviation of PR–reference residuals (dashed

line), estimated standard deviation of the reference rainfall

(dotted line), and standard deviation of PR–true rainfall residuals

(solid line) as functions of the bias1RQI-corrected reference. The

vertical line (50 mm h21) indicates the limit of the good sampling

conditions.
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parts of the edges of rainy regions. Nevertheless, the

variogram analysis showed that the PR adequately

represents the spatial structure of the rain fields. The

scatterplots revealed PR-estimated rain rates are only

moderately correlated (Pearson correlation coefficient

of 0.6) to the best reference rainfall on a point-to-point

basis.

The statistical model developed here quantifies the

relation between instantaneous PR rainfall and the

corresponding reference rainfall. It consists of a de-

terministic additive function and a random uncertainty

component, both conditioned on given reference values.

The contribution of systematic PR errors is confirmed to

be quite large because of the aforementioned signal at-

tenuation issue.

In terms of perspectives, the relative contributions of

errors linked to rainfall type and off-nadir angle need to

be evaluated, as well as influence of the underlying ter-

rain. The same framework and reference rainfall data-

sets can be readily applied to rainfall retrievals from

other sensors on board low-earth-orbiting satellites [i.e.,

TMI, Advanced Microwave Scanning Radiometer for

Earth Observing System (EOS) (AMSR-E), Special Sen-

sor Microwave Imager (SSM/I), and Microwave Analysis

and Detection of Rain and Atmospheric Structures

(MADRAS)]. This framework will also be applied to

GPM rainfall estimates following its launch in 2013.

Another important issue to study is how the various

error sources in PR, which is often used as a calibrator,

propagate when merging with geostationary infrared

data for a number of satellite-based, high-resolution

precipitation products. Finally, the error model dis-

cussed in this study would be useful to generate rainfall

ensembles and in hydrologic error propagation studies

of satellites estimates.
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